for Introductory Physics

Answers

1. CHOICE D: We are given x - 1 = 2. To solve for x, add 1 to both sides of the equation:

so
$$x + 1 = (3 + 1) = 4$$

- 2. CHOICE B: volume = $^{"}$ R² h = (3)(2 cm)² (5 cm) = 60 cm³
- 3. CHOICE C: If x = 3 then $x^2 + 3 = 3^2 + 3 = 9 + 3 = 12$
- 4. CHOICE C: The area is 8 entire squares plus 0.8 + 0.4 + 0.9 + 0.1 + 0.5 squares which is 10.7 squares. Each square has an area of so the total area is about 53.5.
- 5. CHOICE A: (-2)(-6) 12 ----- =

$$(2xy^3)^3 = 2^3x^3(y^3)^3 = 8x^3y^9$$

7. CHOICE A:
$$(2x-1)(4x+1) = 2x(4x+1) + (-1)(4x+1)$$

= $8x^2 + 2x - 4x - 1$
= $8x^2 - 2x - 1$

8. CHOICE A:
$$\frac{4" \cdot 10^{\#15}}{}$$
 #15+12 #3 #4

- 9. CHOICE D: A constraint $\frac{x^2}{y} + \frac{x^2}{y} + \frac{$
- 10. CHOICE C: This is the difference of the contract of the c
- 11. CHEVEL $\frac{10^{-12}}{10^{-12}}$ 20 10^{8-12} 20 10^{-4} 2 10^{-3}
- 12. CHOICE A: (2x+3)-(x-2)=2x+3-x+3
- 14 CHOICE Com. Let y be the number "Of" means multiply "is" means equals

$$\frac{1}{-}(x) = 8$$

Multiply both x = 24

- 15. CHUM CEAA. 3x y (-2) 5 - (-8) 5 5 1
- 16. CHC 25 E 25 m (≡ (25 m) (3 feet 10 m)
- 17. CHOICE C: $(x^2 3x + 2) (3x^2 5x 1)$

$$= -2x^2 + 2x + 3$$

18. CHOSICED:
$$\frac{2x}{3\hat{y}} \frac{9y}{4x^2} = \frac{2x}{3\hat{y}} \frac{9y}{4x^2} = \frac{3}{2\hat{x}}$$

- 29. Chure D. 10 (- 2) (- 3次(12-11 2-00 2-12 -
- 30. CHOICE A: The graphs of x 2y = 6 and x + xy = 2 independent the value x and y that satisfy both equations. To get these, and the remaining equations of Substitute into the second equations.

(2y+3) if you way, min this way.

$$=3y+6=-3$$

Subtract & from both sides:

$$3y + 6 = -3$$

 -6 -6
 $-3y = -9$

Divide bath sideologither ov innee-

$$3y = -9$$

$$3$$

$$3$$

$$y = -3_{ca}$$

- 32. CHOICE B. $\sqrt{-2\hat{j}} = -3$ because (-3)(-3)(-3)(-3) roots can be negative.
- 33. CHOICE A: As a heromes very large because the returning the reases national that it is a recall an account of the form as 4 bx + 6 is a pararrollar.
- 34. CHOICE D: Recall that $long_{0}(x + n) = 2$ means.

--- ----

_ _ _ _ _____

56. CHOICE A:
$$4(s+2) = (4 \times s) + (4 \times 2) = 4s+8$$

57. CHOICE A:
$$3/4$$
" $1/7 = \frac{3}{4}$ " $\frac{1}{7} = \frac{21$ " $\frac{4}{28} = \frac{17}{28}$

58. CHOICE B: Subtract one from both sides:

$$1 - 5x < 3$$
 -1
 $-5x < 2$

Divide both sides by -5, and remember to switch the sign of the inequality because we are dividing by a negative number:

$$-5x < 2$$

---- -5
 -5
 $x > -2/5$

- 59. CHOICE B: The function has an absolute minimum at x = 1, the lowest point on the graph between 0 and 4. The other low point at x = 3 is a "local minimum."
- 60. CHOICE A: $3^2 + 4^2 = D^2 = 25$ so D = 5.

61. CHOICE B:
$$(2\sqrt{3})(3\sqrt{6}) = 6\sqrt{18} = 6\sqrt{(2)(9)} = 6\sqrt{9}\sqrt{2} = (6)(3)\sqrt{2} = 18\sqrt{2}$$

- 62. CHOICE B: $1 \sin^2 \theta = \cos^2 \theta$ (a trigonometric identity).
- 63. CHOICE A: $f(x) = \cos(3x)$, then $(!/6) = \cos(!/2) = 0$.

- 64. CHOICE A: The circumference of a circle is 2 "R.
- 65. CHOICE E: The sine curve has a y-intercept at zero, increases as x increases to \$/2 and decreases as x decreases to \$/2.
- 66. CHOICE E: $\csc \# = 1/\sin \#$ and $\tan \# = \sin \#/\cos \#$, so $\sin \# \tan \# \csc^2 \# = \sin \# (\sin \#/\cos \#) (1/\sin^2 \#) = 1/\cos \# = \sec \#$.
- 67. CHOICE B: $\tan \# = \sin \#/\cos \#$, and $\cos (-\$/2)$ is zero. A zero in the denominator renders the expression undefined.
- 68. CHOICE E: The area of a circle is " \mathbb{R}^2
- 69. CHOICE B: the sum of the angles in a triangle add up to 180 degrees.
- 70. CHOICE C: Taking the slope between x = 0 and x = 5, we see that:

$$= \frac{500 \text{miles}}{480 \text{seconds}} = 1 \frac{\text{mile}}{\text{second}}$$