Faculty Publication: Associate Professor and Chair of Biology Thomas J. Mozdzer
Authors: Holmquist, James R.; Schile-Beers, Lisa; Buffington, Kevin; Lu, Meng; Mozdzer, Thomas J.; Riera, Jefferson; Weller, Donald E.; Williams, Meghan; Megonigal, J. Patrick
Source: Marine Ecology Progress Series, Volume 666, Page 57-72, DOI: 10.3354/meps13683, May 2021
Type of Publication: Journal Article
Abstract: Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Chesapeake Bay estuary, Maryland (USA), to both intercompare unbiased digital elevation model (DEM) creation techniques and to describe niche partitioning of several common tidal wetland plant species. We identified a tradeoff between scalability and performance in creating unbiased DEMs, with more data-intensive methods such as kriging performing better than 3 more scalable methods involving post-processing of light detection and ranging (LiDAR)-based DEMs. The LiDAR Elevation Correction with Normalized Difference Vegetation Index (LEAN) method provided a compromise between scalability and performance, although it underpredicted variability in elevation. In areas where native plants dominated, the sedge Schoenoplectus americanus occupied more frequently flooded areas (median: 0.22, 95% range: 0.09 to 0.31 m relative to North America Vertical Datum of 1988 [NAVD88]) and the grass Spartina patens, less frequently flooded (0.27, 0.1 to 0.35 m NAVD88). Non-native Phragmites australis dominated at lower elevations more than the native graminoids, but had a wide flooding tolerance, encompassing both their ranges (0.19, -0.05 to 0.36 m NAVD88). The native shrub Iva frutescens also dominated at lower elevations (0.20, 0.04 to 0.30 m NAVD88), despite being previously described as a high marsh species. These analyses not only provide valuable context for the temporally rich but spatially restricted data collected at a single well-studied site, but also provide broad insight into mapping techniques and species zonation.